ارزیابی قابلیت ضریب مشارکت ژنراتورها به منظور تعیین نوع نوسانات سیگنال کوچک سیستم قدرت با استفاده از روش های تحلیلی و پیش بینی همزمان آن ها با استفاده از شبکه عصبی
نویسندگان
چکیده
پایداری زاویه ای سیگنال کوچک رتور که از آن به عنوان پایداری سیگنال کوچک نیز یاد می شود، یکی از مهمترین عوامل در برنامه ریزی و بهره برداری سیستم های قدرت است. این نوع از پایداری ها، در چهار حالت نوسانی شامل نوسانات درون ناحیه ای، بین ناحیهای، کنترلی و پیچشی مورد بررسی قرار می گیرد. شناسایی و تفکیک رفتار چنین نوسان هایی می تواند در اِعمال رفتارهای کنترلی مانند تنظیم پارامترهای سیستم تحریک و پایدارساز سیستم قدرت به منظور کنترل و میرایی نوسان ها، مورد استفاده قرار بگیرد. یکی از ابزارهای مرسوم در بررسی اینگونه نوسانات، فرکانس مدهای بحرانی سیستم و ضرایب مشارکت ژنراتورها در این مدها است که با استفاده از روش های تحلیلی مانند آنالیز مدال تعیین می گردند. در این مقاله، ابتدا با استفاده از روش های تحلیلی، قابلیت ضرایب مشارکت ژنراتورها در تعیین نوع نوسانات درون ناحیه ای و بین ناحیهای سیستم قدرت بررسی شده و در ادامه از آنجاکه در اینگونه بررسی ها، استفاده از روش های مرسوم مانند آنالیز مدال، سخت و زمانبر است، با استفاده از یک روشی ترکیبی شامل روش انتخاب مؤلفه و شبکه عصبی pnn، ضریب مشارکت ژنراتورها و نوع نوسان سیستم قدرت در مد بحرانی، مورد پیش بینی قرار خواهد گرفت. مزیت روش پیشنهادی، دقت و سرعت بالای محاسبات و همچنین تعیین همزمان نوع نوسانات و میزان مشارکت متغیر حالت غالب ژنراتورهای سیستم در مد بحرانی می باشد.
منابع مشابه
ارزیابی قابلیت ضریب مشارکت ژنراتورها به منظور تعیین نوع نوسانات سیگنال کوچک سیستم قدرت با استفاده از روشهای تحلیلی و پیشبینی همزمان آنها با استفاده از شبکه عصبی
پایداری زاویهای سیگنال کوچک رتور که از آن به عنوان پایداری سیگنال کوچک نیز یاد میشود، یکی از مهمترین عوامل در برنامهریزی و بهرهبرداری سیستمهای قدرت است. این نوع از پایداریها، در چهار حالت نوسانی شامل نوسانات درون ناحیهای، بینناحیهای، کنترلی و پیچشی مورد بررسی قرار میگیرد. شناسایی و تفکیک رفتار چنین نوسانهایی میتواند در اِعمال رفتارهای کنترلی مانند تنظیم پارامترهای سیستم تحریک و پایدا...
متن کاملپیش بینی نوسانات بازده بازار با استفاده از مدل های ترکیبی گارچ ـ شبکه عصبی
در این پژوهش به مطالعه توان پیش بینی طیف وسیعی از مدل های ناهمسانی واریانس شرطی (G)ARCH طی یک دوره 126 ماهه بر روی بازده روزانه شاخص کل بورس تهران (TEDPIX) پرداخته شده است. نتایج بررسی این مدل ها تأیید کننده وجود سه ویژگی نوسان خوشه ای، عدم تقارن و نیز غیر خطی بودن، در سری زمانی بازده می باشد. سپس با هدف افزایش قدرت پیش بینی، این مدل ها با شبکه های عصبی مصنوعی ترکیب شده اند و نتایج حاصل از طرق ...
متن کاملمقایسه پیش بینی هزینه ها با استفاده از روش های آماری و شبکه عصبی مطالعه موردی: شهرداری اصفهان
پیش بینی هزینه کل آب در شهرداری اصفهان کمک موثری میباشد برای بهینه سازی مصرف آب در 14 منطقهشهرداری اصفهان. هزینه کل آب تابعی از پارامترهای مختلف و متنوع می باشد. به همین دلیل پیش بینی هزینه بهصورت تحلیلی بسیار مشکل و یا ناممکن می باشد. در این شرایط استفاده از سیستم های هوشمند می تواند بهعنوان یک گزینه راهگشا مطرح گردد. در این تحقیق با استفاده از شبک ه های عصبی پرسپترون چند لایه و باالگوریتم آمو...
متن کاملپیش بینی سطح عمومی قیمت ها و تورم در ایران با استفاده از شبکه عصبی
(صحت مطالب مقاله بر عهده نویسنده است و بیانگر دیدگاه مجمع تشخیص مصلحت نظام نیست) هدف این مقاله پیش بینی روند تورم و شاخص قیمت ها در اقتصاد ایران است. دادههای این مقاله شامل تورم سالانه و دادههای ماهانه شاخص قیمت مصرفکننده در ایران از سال 1340 تا 1392 می باشد. در این تحقیق برای پیش بینی تورم از شبکه عصبی مصنوعی استفاده شده است. برای پیشبینی تورم ماهانه از یک شبکه پسانتشار خطا(BP) با 15 نر...
متن کاملمقایسه تأثیر وضعیت طاق باز و دمر بر وضعیت تنفسی نوزادان نارس مبتلا به سندرم دیسترس تنفسی حاد تحت درمان با پروتکل Insure
کچ ی هد پ ی ش مز ی هن ه و فد : ساسا د مردنس رد نامرد ي سفنت سرتس ي ظنت نادازون داح ي سکا لدابت م ي و نژ د ي سکا ي د هدوب نبرک تسا طسوت هک کبس اـه ي ناـمرد ي فلتخم ي هلمجزا لکتورپ INSURE ماجنا م ي دوش ا اذل . ي هعلاطم ن فدهاب اقم ي هس عضو ي ت اه ي ندب ي عضو رب رمد و زاب قاط ي سفنت ت ي هـب لاتـبم سراـن نادازون ردنس د م ي سفنت سرتس ي لکتورپ اب نامرد تحت داح INSURE ماجنا درگ ...
متن کاملپیش بینی تولید آبزیان دریایی در ایران با استفاده از روش ARIMA و شبکه عصبی مصنوعی
پیشبینی پدیدههای اقتصادی ساختاری فراهم میکند تا مدیران و مسؤلان اقتصادی را در گرفتن تصمیمهای درست یاری دهد. هدف اصلی این مطالعه پیشبینی مقدار تولید آبزیان دریایی در ایران است. برای این منظور از روشهای سری زمانی خود توضیح جمعی میانگین متحرک (ARIMA)[1] و شبکه عصبی مصنوعی[2] استفاده میشود. در این مطالعه سه ساختار گوناگون شبکه عصبی شامل شبکه عصبی پیشرو[3]، تابع پایه شعاعی[4] و المن[5] بکار ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
مدلسازی در مهندسیجلد ۱۳، شماره ۴۲، صفحات ۱۱۹-۱۳۳
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023